Towards Super-Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs
نویسندگان
چکیده
Leakage-resilient constructions have attracted significant attention over the last couple of years. In practice, pseudorandom functions are among the most important such primitives, because they are stateless and do not require a secure initialization as, e.g. stream ciphers. However, their deployment in actual applications is still limited by security and efficiency concerns. This paper contributes to solve these issues in two directions. On the one hand, we highlight that the condition of bounded data complexity, that is guaranteed by previous leakage-resilient constructions, may not be enough to obtain practical security. We show experimentally that, if implemented in an 8-bit microcontroller, such constructions can actually be broken. On the other hand, we present tweaks for tree-based leakage-resilient PRFs that improve their efficiency and their security, by taking advantage of parallel implementations. Our security analyses are based on worst-case attacks in a noise-free setting and suggest that under reasonable assumptions, the side-channel resistance of our construction grows super-exponentially with a security parameter that corresponds to the degree of parallelism of the implementation. In addition, it exhibits that standard DPA attacks are not the most relevant tool for evaluating such leakage-resilient constructions and may lead to overestimated security. As a consequence, we investigate more sophisticated tools based on lattice reduction, which turn out to be powerful in the physical cryptanalysis of these primitives. Eventually, we put forward that the AES is not perfectly suited for integration in a leakage-resilient design. This observation raises interesting challenges for developing block ciphers with better properties regarding leakage-resilience.
منابع مشابه
Leakage-Resilient Symmetric Cryptography under Empirically Verifiable Assumptions
Leakage-resilient cryptography aims at formally proving the security of cryptographic implementations against large classes of sidechannel adversaries. One important challenge for such an approach to be relevant is to adequately connect the formal models used in the proofs with the practice of side-channel attacks. It raises the fundamental problem of finding reasonable restrictions of the leak...
متن کاملCombining Leakage-Resilient PRFs and Shuffling - Towards Bounded Security for Small Embedded Devices
Combining countermeasures is usually assumed to be the best way to protect embedded devices against side-channel attacks. These combinations are at least expected to increase the number of measurements of successful attacks to some reasonable extent, and at best to guarantee a bounded time complexity independent of the number of measurements. This latter guarantee, only possible in the context ...
متن کاملA Leakage-Resilient Mode of Operation
A weak pseudorandom function (wPRF) is a pseudorandom functions with a relaxed security requirement, where one only requires the output to be pseudorandom when queried on random (and not adversarially chosen) inputs. We show that unlike standard PRFs, wPRFs are secure against memory attacks, that is they remain secure even if a bounded amount of information about the secret key is leaked to the...
متن کاملDissecting Leakage Resilient PRFs with Multivariate Localized EM Attacks - A Practical Security Evaluation on FPGA
In leakage-resilient symmetric cryptography, two important concepts have been proposed in order to decrease the success rate of differential side-channel attacks. The first one is to limit the attacker’s data complexity by restricting the number of observable inputs; the second one is to create correlated algorithmic noise by using parallel S-boxes with equal inputs. The latter hinders the typi...
متن کاملA Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme
Leakage-resilient cryptography aims at capturing side-channel attacks within the provable security framework. Currently there exists a plethora of schemes with provably secure guarantees against a variety of side-channel attacks. However, meeting the strongest security levels (resilience against continual leakage attacks) under the weakest assumptions leads currently to costly schemes. Addition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012